a2 United States Patent

Boshernitsan et al.

US009032376B2

US 9,032,376 B2
May 12, 2015

(10) Patent No.:
(45) Date of Patent:

(54) STATIC ANALYSIS OF COMPUTER CODE TO
DETERMINE IMPACT OF CHANGE TO A
CODE COMPONENT UPON A DEPENDENT
CODE COMPONENT

(71) Applicant: Synopsys, Inc., Mountain View, CA
(US)

(72) Inventors: Marat Boshernitsan, San Francisco, CA
(US); Andreas Kuehlmann, Berkeley,
CA (US); Scott McPeak, San Francisco,
CA (US); Philip Chong, Berkeley, CA
(US); Tobias Welp, Berkeley, CA (US)

(73) Assignee: Synopsys, Inc., Mountain View, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 8 days.

(21) Appl. No.: 14/037,576

(22) Filed: Sep. 26, 2013
(65) Prior Publication Data
US 2014/0130020 A1 May 8, 2014

Related U.S. Application Data

(60) Provisional application No. 61/706,819, filed on Sep.
28, 2012, provisional application No. 61/840,501,
filed on Jun. 28, 2013.

(58) Field of Classification Search
CPC GOG6F 11/368; GO6F 11/3688; GO6F 11/3692

USPC oo 717/124-135; 714/37,38.1
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,335,344 A
5,703,788 A

8/1994 Hastings
12/1997 Shei et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO0-2014052655 A2 4/2014
WO WO0-2014052655 A3 4/2014
OTHER PUBLICATIONS

“International Application Serial No. PCT/US2013/062016, Interna-
tional Search Report mailed Apr. 9, 20147, 2 pgs.

(Continued)

Primary Examiner — Qing Chen
(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

A method is provided to evaluate impact of a change in code
of'a depended upon component of a system stored in a com-
puter readable storage device, upon a dependent component
of the system, the method comprising: identifying a depen-
dency relationship between a first component stored in a
computer readable storage device and a second component
stored in the computer readable storage device; in response to
a determination that the second component depends upon the
first component, configuring a computer system to obtain a
first property evaluation corresponding to the first compo-

(51) Int.CL nent; and in response to obtaining the first property evaluation
GO6F 9/44 (2006.01) corresponding to the first component, configuring the com-
GO6F 1100 (2006.01) puter system to associate the first property evaluation with the
GO6F 11/36 (2006.01) second component, and obtain a second property evaluation

(52) US.Cl corresponding to the second component, wherein the second
CPC : GOGF 11/3688 (2013.01); GOGF 11/368 component is associated with the first property evaluation.

(2013.01) 32 Claims, 16 Drawing Sheets
900 ~
9024 COMPARE 9028
Fool — SUMMARY SUMMARY | | Foo?
Fool Foo2
COMPARE
SUMMARY SUMMARY
Barl Barl Bar? Bar2
COMPARE
SUMMARY SUMMARY
Blal Blal Bla2 Bla2

US 9,032,376 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,340,726 Bl 3/2008 Chelfet al.
8,359,583 B2 1/2013 Chou et al.
8,516,434 B2 8/2013 McPeak

8,516,443 B2 *
8,549,490 B2* 10/2013 Dolby et al.

82013 Lietal. ..o 717/123
. 717/133

8,762,949 B2* 6/2014 Conway et al. . 717/126
8,806,450 B1* 82014 Maharanaetal. ... 717/133
2003/0066061 Al 4/2003 Wu etal.
2007/0006151 Al* 1/2007 Conway etal. 717/120
2011/0078667 Al* 3/2011 Dolbyetal. 717/133

2012/0151278 Al 6/2012 Tsantilis

2012/0222021 Al 82012 Zhao

2012/0304153 Al* 11/2012 Lietal. ..o 717/123
2013/0031531 Al* 1/2013 Keynesetal. ... 717/126
2014/0096113 Al 4/2014 Kuehlmann et al.

OTHER PUBLICATIONS

“International Application Serial No. PCT/US2013/062016, Written
Opinion mailed Apr. 9, 2014, 13 pgs.

Anderson, Paul, “Domain-specific property checking with advanced
static analysis”, http://mil-embedded.com/articles/domain-specific-
checking-advanced-static-analysis/, (Feb. 17, 2011), 5 pgs.

Bessey, Al, et al., “A few Billion Lines of code Later using static
Analysis to find Bugs in the Real World”, Communications of the
ACM | Feb. 2010 | vol. 53 | No. 2, (2010), 66-75.

Chess, Brian, “Secure Programming with Static Analysis”, (May 24,
2007), 56 pgs.

Engler, Dawson, et al., “Static Analysis versus Software Model
Checking for bug finding”, (2004), 12 pgs.

Gomes, Ivo, et al.,, “An overview on the Static Code Analysis
approach in Software Development”, 1 Software Testing and Quality,
Master in Informatics and Computing Engineering, 2 Software Test-
ing and Quality, Doctoral Program in Informatics Engineering,
Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto
Frias 4200-465, Porto, Portug, (2009), 16 pgs.

Guo, Philip J., et al., “Linux Kernel Developer Responses to Static
Analysis Bug Reports”, (2009), 8 pgs.

Nori, Aditya V., et al., “The Yogi Project: Software Property Check-
ing via Static Analysis and Testing”, (2009), 178-181.

* cited by examiner

U.S. Patent May 12, 2015 Sheet 1 of 16 US 9,032,376 B2

[fis] [0
a m%\/ﬁ N
T ol /]
R

]] 7] LEGACY
/ \conE
CHANGED ; : ; :
\ CODE /

K CHANGE "RIPPLE" /

U.S. Patent

May 12, 2015 Sheet 2 0of 16

202

IDENTIFY COMPONENTS THAT HAVE
DEPENDENCY RELATIONSHIPS AMONG THEM

205

DETERMINE ORDER FOR PROPERTY
EVALUATION DETERMINATIONS

208

PRODUCE INFORMATION STRUCTURE
REPRESENTING DEPENDENCY RELATIONSHIPS

20

PRODUCE SUMMARIES OF COMPONENT

PROPERTIES

FIG. 3

US 9,032,376 B2

U.S. Patent

May 12, 2015 Sheet 3 0of 16

402~
CLASSIFY 408
COMPONENT —
404~ 410
EVALUATE
COMPONENT
406~ 414
PRODUCE SUMMARY 1
OF PROPERTIES 4L

FIG. 5

US 9,032,376 B2

U.S. Patent May 12, 2015 Sheet 4 of 16 US 9,032,376 B2

(START)

MORE
PROPERTIES?

YES
504

SELECT A PROPERTY

512

DEPENDENT
COMPONENT?

YES
514

OBTAIN PROPERTY

Vs 508
EVALUATE PROPERTY

510
PROVIDE TO PROPERTY
EVALUATION SUMMARY

FIG. 6A

U.S. Patent May 12, 2015

600 ™~

!

Sheet 5 of 16

602

TRAVERSE PATH
PARSE CODE

604

DETERMINE
PROPERTY EVALUATION

606

STORE PROPERTY
EVALUATION IN SUMMARY

FIG. 6B1

FROM 602

622

ASSOCIATE
WITH PROPERTY
EVALUATION OF DEP.
UPON COMP.2

ASSOCIATE
PROPERTY EVALUATION
USED?

626

624

628

DETERMINE PROPERTY
EVALUATION TAKING
INTO ACCOUNT

DETERMINE PROPERTY
EVALUATION WITHOUT
TAKING INTO ACCOUNT

'

TO 604

'

TO 604

FIG. 6B2

US 9,032,376 B2

U.S. Patent May 12, 2015 Sheet 6 of 16 US 9,032,376 B2

00001,

\ -

STAGE A d
Aq
5134

512
5i4
508

000,

Mo \

STAGE By
B
\
\

FIG. 6C1

DECENDING ORDER

STAGE C;
C
\

STAGED i
Dy
\
STAGEE,
Eq
\

US 9,032,376 B2

Sheet 7 of 16

May 12, 2015

U.S. Patent

009

c Vosy - Verp
Q"

s

m@e mm§

209 O

JHAHO DNIANHOSY

009~

Tt
PR

P MDch \.DN?V - 15

m,ﬂsg mm%
’ a1
)

[° ot

0¢

.
H /
==l
(- 3 <
=l pIs
=/ |
s

Yaaovis

ms@ mQS
\

¢

asis
- @7 w0
) — p
i~ [/ NI
B O 009 ~— — =]/
— 7S o 7l
@ ot o
ol <m ot <U - <Q
Yy 30vIS Vg anvIs Yy HOvIS Yaaovis

U.S. Patent May 12, 2015 Sheet 8 of 16 US 9,032,376 B2

/604
602 I\‘ il) '/6022
Al F———————- al a2 F———————- A2
bl:b2
Bl F———————A bl b2 F-——————- B2
cl:c2
Cl p———————+ cl 2 F———————1 C2
dl:d2
DI F—————————- dl 2 F——————F-——1 D2
el :e2
El F——1 el e2 F-—- E2
FIG. 7
/’700
702— Foo
704— Bar
706— Bla

FIG. 8

U.S. Patent

May 12, 2015

class ¥ 802

Foo

.
void
?mctionl O

Bar bar;
bar->function2 () ;

}s

class
Bar

{ Bla *

function2 (int blaNumber)
Bla * result (NULL)

result = new Bla (blaNumber) ;
return result ;

}
¥

class

Bla

{.
mt
member_;

Bla (int member)
: member_(member)

{

}

}s
BASE VERSION

FIG. 94

Sheet 9 of 16

Bar bar;
bar->function2 () ;

}s

class
Bar
{
Bla *
?mction2 (int blaNumber)

Bla * result (NULL) s 810

if (blaNumber = 0)

cout << "Error: Number zero !"
<<endl ;

result = new bla (blaNumber) ;
return result ;

}
¥

class

Bla

{.
nt
member ;

Bla (int member)
: member (member)

{
¥
REVISION |
FIG. 9B

US 9,032,376 B2

U.S. Patent

May 12, 2015 Sheet 10 of 16 US 9,032,376 B2
class y 806 class P
Foo Foo
{ i
void void
gunctionl O fanctionl ()
Bar bar; Bar bar;
bar->function2 () ; bar->function2 () ;
35 3
class class
Bar Bar
{ {
Bla* Bla*
function2 {int blaNumber) function? (int blaNumber)
Bla * result (NULL) 810 Bla * result (NULL)

if (blaNumber = 0)

cout << "Error: -Number-zero 1"
<<endl :

~812

}] result = new Bla (blaNumber) ;1

} return result ;
s
class
0
int
member_;

Bla (int member)
: member_(member)

{

}

fs
REVISION 2

FIG. 9C

if (blaNumber = 0)

cout << "Error: -Number-zero !"
<<endl ;
result - new Bla (blaNumber) ;

return result ;
}
i
class

{ f‘(? 16
long
member_;

Bla {int member)
: member_(member)

{
}
3

REVISION 3

FIG. 9D

US 9,032,376 B2

902B
<
Foo2
Bar2
Bla2

U.S. Patent May 12, 2015 Sheet 11 of 16
900\‘
9004 COMPARE
S Fool SUMMARY SUMMARY
00 Fool Foo2
COMPARE
SUMMARY SUMMARY
Barl Barl Bar2
COMPARE
Blal SUMMARY SUMMARY
a Blal Bla2
FIG, 10A
MATCH
SUMMARY SUMMARY
Barl Bar2
NOT i\IULL NOT i\TULL

FIG. 10B

U.S. Patent May 12, 2015 Sheet 12 of 16 US 9,032,376 B2

10024 COMPARE 10028

S SUMMARY SUMMARY <
Foo2 Foo? Foo3 Foo3

COMPARE

SUMMARY SUMMARY
Bar2 Bar? Bar3 Bar3

COMPARE

SUMMARY SUMMARY

FIG. 11A

MATCH

SUMMARY SUMMARY
Foo2 Foo3

NOT NULL NOT NULL

NOT MATCH

SUMMARY SUMMARY
Bar? Bar3

NOT NULL MAYBE NULL

FIG., 11B

U.S. Patent

May 12, 2015

Sheet 13 of 16

COMPARE

Foo3

SUMMARY

Foo3

US 9,032,376 B2

SUMMARY
Foo4

Food

COMPARE

Bar3

SUMMARY

Bar3

SUMMARY
Bard

Bar4

COMPARE

Bla3

SUMMARY

Bla3

SUMMARY
Bla4

Bla4

FIG. 12A

MATCH

SUMMARY

Foo3

SUMMARY

Food

NOT MATCH

SUMMARY

Bar3

4

SUMMARY

Bar4

8

NOT MATCH

SUMMARY

Bla

4

SUMMARY

Bla

g

FIG. 12B

11028

U.S. Patent May 12, 2015

class ' 102
Foo

{
Bla*

function1 ()

Bar bar;
return bar->function2 () ;

}
}s

class
Bar

Bla *
functionZ (int blaNumber)

Bla * result (NULL) - 810

Sheet 14 of 16

if (blaNumber = 0)

cout << "Error: -Number-zero !"
<<endl ;

US 9,032,376 B2

class ¥ 1204
Foo

{ Bla*

function1 ()

Bar bar;
return bar->function2 () ;

}
¥s

class
Bar

Bla *
function2 (int blaNumber)

Bla * result (NULL) e 810

result = new Bla (blaNumber) ;
} return result ;
}s
class
Bla
{
nt
member _;

Bla (int member)
: member (member)

{
}
}s

FIG. 13A

if (blaNumber = 0)

cout << "Error: -Number-zero !"
<<endl ;
}| result = new Bla (blaNumber) ;|- 812

\ return result ;
¥
class
0 b
int
member ;

Bla (int member)
: member (member)

} .§
FIG. 13B

U.S. Patent

May 12, 2015

Sheet 15 of 16

COMPARE

US 9,032,376 B2

Foo5

SUMMARY
Foo)

SUMMARY
Foob

Foob

COMPARE

SUMMARY
Barj

SUMMARY
Bar6

COMPARE

Bla5

SUMMARY
Blas

SUMMARY
Bla6

Bla6

FIG. 14A

NOT MATCH

SUMMARY

SUMMARY

Foo5

NOT NULL

Foob

MAYBE NULL

NOT MATCH

SUMMARY
Bar5

SUMMARY
Bar6

NOT NULL

MAYBE NULL

FIG. 14B

13028

U.S. Patent May 12, 2015 Sheet 16 of 16 US 9,032,376 B2

1500
1502~ 1510
PROCESSOR
—> [—>>
1524 INSTRUCTIONS VIDEODISPLAY
i~ 1512
MAIN MEMORY « 5 ALPHANUMERIC
<] INPUT DEVICE
15247 INSTRUCTIONS
1514
1506 ~ =
CURSOR CONTROL
STATIC MEMORY nill DEVICE
1 <> 5 1508
154 INSTRUCTIONS = D516
1520~ DRIVE UNIT
NETWORK
MACHINE-READABLE |- 1522
INTERFACE ~ fe— |,
DEVICE MEDIUM
INSTRUCTIONS T~ 1524
\ 1518
SIGNAL
1526 «—> GENERATION
DEVICE

N
FIG. 15

US 9,032,376 B2

1
STATIC ANALYSIS OF COMPUTER CODE TO
DETERMINE IMPACT OF CHANGE TO A
CODE COMPONENT UPON A DEPENDENT
CODE COMPONENT

RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Pro-
visional Patent Application Ser. No. 61/706,819, filed Sep.
28, 2012 and U.S. Provisional Patent Application Ser. No.
61/840,501, filed Jun. 28, 2013, which are hereby incorpo-
rated by reference herein in their entirety.

BACKGROUND

Static code analysis is analysis of computer software that is
performed using an automated software tool without actual
execution of the programs built from the software. Some
example uses of static analysis are to identify generic errors
(such as memory corruption and data races) and system-
specific or interface-specific violations (such as violations of
function-ordering constraints). Static analysis also may be
employed to identify security vulnerabilities, for example.

Static analysis can be used to detect kinds of errors that are
often missed when using dynamic analysis techniques that
involve actual execution of the program code. For example,
static analysis may detect an illegal operation that is con-
tained in a rarely traversed or otherwise hard-to-test condi-
tional branch code path that is rarely visited during operation
of'the software, and that therefore, easily could go undetected
during dynamic analysis. Static analysis ordinarily involves
use of a variety of different checkers to evaluate code paths to
identify different kinds of vulnerabilities and/or errors. For
example, checkers can be used to detect syntax errors, func-
tions without return values, variables that have been declared
but not used, inadvisable automatic type conversions, tainted
data, integer overflows, global-variable inconsistencies,
problems associated with using modules (e.g., missing or
invalid modules or input/export mismatches), to name just a
few.

Static analysis techniques have been developed that utilize
information generated during a build process to identify the
code that is to be subjected to analysis. Modern software
typically is developed using a modular approach. Teams of
programmers may work on different modules or portions of
the software. Consequently, source code, compilers, and
ancillary software components often are distributed across
many different directories and systems. As a result of this
complexity, software developers typically use build manage-
ment utilities such as the “make” program to assist in the
process of building executable code. During a typical soft-
ware development process, source code either represents an
executable script in a high-level programming language, or is
compiled to produce byte code that needs to be further inter-
preted by an interpreter program and/or executable binary
code that runs directly on the CPU. Different portions of the
software may be written using different programming lan-
guages that require the use of different compilers, for
example. Moreover, different compilers may be used to com-
pile different portions of the source code, even when all of the
code is written in the same language. For example, different
compilers may produce executable code that runs on com-
puter systems with different microprocessors. A “build’ pro-
cess, which involves identifying the source code files associ-
ated with a program and establishing appropriate directory
locations, compiler names, and other compilation settings
involves many steps, and software developers typically auto-

20

25

30

35

40

45

50

55

60

65

2

mate such a build process using what typically is referred to as
abuild program. Static analysis processes may leverage infor-
mation about source code that is made available during the
build process by intercepting information that identifies the
code to be statically analyzed. Commonly owned U.S. Pat.
No. 7,340,726 invented by Chelf et al. describes examples of
some known static analysis techniques that leverage informa-
tion about code made available during a build process.

A computer code based system may comprise multiple
code components that have dependency relationships among
them. The code components (hereinafter ‘components’) of a
computer code based system are stored in a non-transitory
computer readable storage device and are used together to
configure a general purpose computer system to perform
specific functions. During development of such a computer
code based system, individual components may be changed,
and changes in these individual components may have an
impact upon other components that are dependent upon the
changed components even though the other components
themselves are unchanged.

FIG. 1 is an illustrative diagram showing relationships
among code components of an example computer code based
system. In this example, the code of certain components has
been changed, but the code of other components is
unchanged. The changes to the code components have an
impact upon other components even though the impacted
code components have not themselves been changed. The
impacted components in the example are dependent upon the
changed components. Change impact can “ripple” through
the computer code based system from the changed compo-
nents to unchanged components that depend upon the
changed components. Not all components that are dependent
upon the changed components are impacted by the changes.
Moreover, legacy components in the example that are not
dependent upon the changed components are not impacted by
the changes.

Itis possible to use static analysis to analyze the impact that
changes to the code of some components have upon
unchanged components that have a dependent relationship
with changed components.

SUMMARY

In one aspect, a method is provided to evaluate impact of a
change in code of a depended upon code component of a
system stored in a non-transitory computer readable storage
device upon a dependent code component of the system. A
first property evaluation summary structure is provided in a
computer readable storage device that associates multiple
respective property evaluations with a first version of a first
component of the system. A second property evaluation sum-
mary structure is provided in a computer readable storage
device that associates multiple respective property evalua-
tions with a second version of the first component of the
system. Corresponding property evaluations from within the
first and second property summary evaluation structures are
compared to determine whether a change to one of the two
versions has had an impact on the other.

In another aspect, a method is provided to evaluate impact
of a change in code of a depended upon component of a
system stored in a non-transitory computer readable storage
device, upon a dependent component of the system. A depen-
dency relationship is identified between a first component
stored the storage device and a second component stored in
the storage device. In response to a determination that the
second component depends upon the first component, the
computer system is configured to obtain a first property evalu-

US 9,032,376 B2

3

ation corresponding to the first component. In response
obtaining the first property evaluation corresponding to the
first component, the computer system is configured to asso-
ciate the first property evaluation with the second component
and to determine a second property evaluation corresponding
to the second component, the second component being asso-
ciated with the first property evaluation.

In still another aspect, a method is provided to evaluate
impact of a change in code of a depended upon component of
a system stored in a non-transitory computer readable storage
device, upon a dependent component of the system. A com-
puter system is configured to determine, successively in a
component dependency order, respective property evalua-
tions for each of multiple components and to associate
respective successive determined property evaluations in a
non-transitory computer readable storage device with respec-
tive code that is part of a respective next successive compo-
nent in the component dependency order that depends upon
the respective component for which the respective associated
property evaluation is determined. At least one of the multiple
respective successive acts of determining includes determin-
ing a respective property evaluation for a respective compo-
nent having respective code that is associated with a property
evaluation determined for a respective previous successive
component in the component dependency order.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustrative diagram showing relationships
among code module components of an example hypothetical
system that includes multiple code modules stored in a non-
transitory storage device.

FIG. 2 is an illustrative diagram showing dependency rela-
tionships among components of a system in accordance with
some embodiments.

FIG. 3 is anillustrative flow diagram representing a process
to identify dependency relationships among components of a
system and to construct property evaluation summaries asso-
ciated with components identified as having dependency rela-
tionships among them in accordance with some embodi-
ments.

FIG. 4 is an illustrative dependency graph data structure
that is produced according to the process of FIG. 3 and that is
stored in a non-transitory computer readable storage device in
accordance with some embodiments.

FIG. 5 is an illustrative drawing representing a process to
summarize properties of a component in accordance with
some embodiments.

FIG. 6A is an illustrative flow diagram that shows addi-
tional details of a process to produce a property evaluation for
a selected component in accordance with some embodiments.

FIG. 6B1 is an illustrative flow diagram representing in
general terms an example property evaluation deriver process
in accordance with some embodiments.

FIG. 6B2 is an illustrative flow diagram representing addi-
tional details of the process of FIG. 6B1 in accordance with
some embodiments.

FIGS. 6C1-6C2 are illustrative flow diagrams that repre-
sent a process to obtain a property evaluation that involves
following a descending code path (FIG. 6C1) and an ascend-
ing code path (FIG. 6C2) to obtain a property evaluation for a
component in accordance with some embodiments.

FIG. 7 is an illustrative drawing representing relationships
among the first and second dependency graph data structures,
associated property evaluation summaries and a comparator
configured to compare the property evaluation summaries in
accordance with some embodiments.

—

0

20

25

30

35

40

45

50

55

60

65

4

FIG. 8 is an illustrative drawing representing a dependency
graph data structure that sets forth dependency relationships
among components Foo, Bar and Bla in accordance with
some illustrative examples.

FIGS. 9A-9D shows an illustrative base version (FIG. 9A)
an illustrative first revision (FIG. 9B), an illustrative second
revision (FIG. 9C), and an illustrative third revision (FIG.
91)) of first example code.

FIGS. 10A-10B are illustrative drawings showing respec-
tive dependency graph data structures (FIG. 10A) and prop-
erty evaluation summary structures (FIG. 10B) that corre-
spond to a comparison the code of the base version and first
revision of FIGS. 9A-9B in accordance with some embodi-
ments.

FIGS. 11A-11B are illustrative drawings showing respec-
tive dependency graph data structures (FIG. 11A) and prop-
erty evaluation summary structures (FIG. 11B) that corre-
spond to a comparison of the code of the first revision and the
second revision of FIGS. 9B-9C in accordance with some
embodiments.

FIGS. 12A-12B are illustrative drawings showing respec-
tive dependency graph data structures (FIG. 12A) and prop-
erty evaluation summary structures (FIG. 12B) that corre-
spond to a comparison of the code of the second revision and
the third revision of FIGS. 9C-9D in accordance with some
embodiments.

FIGS. 13A-13B shows an illustrative base version (FIG.
13A) an illustrative revision (FIG. 13B) of second example
code.

FIGS. 14A-14B are illustrative drawings showing respec-
tive dependency graph data structures (FIG. 14A) and prop-
erty evaluation summary structures (FIG. 14B) that corre-
spond to a comparison of the base code and revision code of
FIGS. 13A-13B in accordance with some embodiments.

FIG. 15 shows a diagrammatic representation of a machine
in the example form of a computer system within which a set
of instructions, for causing the machine to perform any one or
more of the methodologies discussed herein, may be executed
in accordance with some embodiments.

DESCRIPTION OF EMBODIMENTS

The following description is presented to enable any per-
son skilled in the art to create and use a computer system
configuration and related method and article of manufacture
to evaluate the impact of a change in a component of a system
upon another component of the system that is dependent upon
the changed component. Various modifications to the
embodiments will be readily apparent to those skilled in the
art, and the generic principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the invention. Moreover, in the
following description, numerous details are set forth for the
purpose of explanation. However, one of ordinary skill in the
art will realize that the invention might be practiced without
the use of these specific details. In other instances, well-
known data structures and processes are shown in block dia-
gram form in order not to obscure the description of the
invention with unnecessary detail. Identical reference numer-
als may be used to represent different views of the same item
in different drawings. Flow diagrams in drawings referenced
below are used to represent processes. A computer system is
configured to perform these processes. The flow diagrams
include modules that represent the configuration of a com-
puter system according to computer program code to perform
the acts described with reference to these modules. Thus, the
present invention is not intended to be limited to the embodi-

US 9,032,376 B2

5

ments shown, but is to be accorded the widest scope consis-
tent with the principles and features disclosed herein.

Definitions of Terms

Checker

As used herein, a ‘checker’ refers to a computer program
that configures a computer system to traverse a program code
path while keeping track of code-path-specific information
and that provides an indication of errors, violations, vulner-
abilities or other information gathered in the course of the
code path traversal. Static analysis ordinarily involves run-
ning a multiplicity of checkers to check for a wide variety of
different errors, violations or vulnerabilities, for example.
Executing a checker may involve analyzing one or more
computer programs or portions of a program, and then creat-
ing an output to a database stored in a computer readable
device.

Component

As used herein, the term ‘component’ refers to a computer
code component that is stored in a non-transitory storage
device of a system that other units of the system, such as other
components, depend upon for their functionality. Examples
of computer components include software-based functions,
software-based modules, a collection of functions in a class
(e.g., methods), a global variable or a data type definition each
of which is encoded in a non-transitory computer readable
storage device. In some embodiments, a component may
represent a hardware block or cell or circuitry of a hardware
system, described in a hardware description language, for
example. A component can be used through one or more of a
function call, reference, instantiation or inheritance, for
example. In some embodiments, for example, computer pro-
gram code defines components that are callable, such as
‘functions’ or that can otherwise influence the behavior of
other units such as ‘data type definitions’ and ‘global vari-
ables’. Components may be re-used throughout a computer
program through function calls and/or definition dependency.

Property Evaluation

As used herein, a ‘property evaluation’ of a component
refers to an attribute of the component that summarizes some
aspect of that component’s behavior.

Property Deriver

As used herein, a ‘property deriver’ refers to a checker that
configures a computer system to derive a property evaluation
of'a component.

Function

The term ‘function’, also referred to as a subroutine, pro-
cedure or method, as used herein with reference to a portion
a computer program code refers to a portion of computer
program code that performs a specific task that is relatively
independent of other code within the program and that typi-
cally is written so that it can be invoked at several different
places within a program including from within other func-
tions. A call to a function passes control to the function, and
after the function is executed, control returns to a next instruc-
tion of the caller function.

Type

The term ‘type’ as used herein with reference to a portion a
computer program code refers to a classification identifying
one of various types of data, such as real-valued, integer, long
or Boolean that determines the possible data values for that
type. The term ‘global variable’ as used herein means a vari-
able that is accessible from many components of a program.

20

25

30

40

45

50

60

65

6

System
As used herein, a ‘system’ refers to a set of interacting or
interdependent components forming an integrated whole.

Dependencies Among Components

FIG. 2 is an illustrative diagram showing dependency rela-
tionships 100 among components of a system 100 in accor-
dance with some embodiments. Arc 102 between component
E and component C indicates that component C is dependent
upon component E. Arc 104 between component D and com-
ponent C indicates that component C is dependent upon com-
ponent D). Arc 106 between component C and component B
indicates that component B is dependent upon component C.
Arc 108 between component B and component A indicates
that component A is dependent upon component B.

The relationships among the components of FIG. 2 define
an example of component dependency order in which com-
ponents D and E are first in order since they are the base
components that have no dependency upon any other compo-
nent in the system 100. Component C is second in order since
component C depends upon components D and E. Compo-
nent B is third in order since component B depends upon
component C. Component A is fourth in order since compo-
nent A depends upon component B.

Components A-E may be constituents of a call graph
embedded within other computer program code (not shown),
which may be part of a software code based system stored in
a non-transitory computer readable device, and the depen-
dency relationships may be caller/callee relationships, for
example. Continuing with the call graph example, component
A is a caller of component B, and component B is a callee of
component A. Moreover, continuing further with the call
graph example, each component may be associated with a
function. A caller component is associated with a function
that calls a function associated with a callee component.
Thus, component A can be associated with a function that
calls a function associated with component B. It will be
appreciated that a component can be a caller relative to one
component in a call graph and a cal lee relative to another
function in the call graph. For example, component B is a
callee relative to component A and is a caller relative to
component C.

Alternatively, for example, components A-E may be con-
stituents of a class inheritance graph embedded within other
computer program code (not shown), which may be part ofa
software-based system stored in a non-transitory computer
readable device, and the dependency relationships may be
superclass/subclass relationships, for example. Continuing
with the inheritance graph example, component A is a super-
class of component B, and component B is a subclass of
component A. Moreover, continuing further with the inherit-
ance graph example, each component may be associated with
a class definition. A superclass component is associated with
a class definition that is inherited by a class associated with a
subclass component. Thus, component A can be associated
with a class that is inherited by the class associated with
component B. It will be appreciated that a component can be
a subclass relative to one component in an inheritance graph
and a superclass relative to another component in the inher-
itance graph. For example, component B is a subclass relative
to component A and is a superclass relative to component C.

Alternatively, for example, components A-E may be con-
stituents of a graph that indicates instantiations of modules
within a software-based representation of a hardware design
stored in a non-transitory computer readable device, for
example. Continuing with the instantiation graph example,

US 9,032,376 B2

7

component A is a user of component B, and component B is
an instantiation of a hardware module in component A. More-
over, continuing further with the instantiation graph example,
each component could be associated with a module definition
in a hardware description language.

Component Dependency Graph Structure

FIG. 3 is anillustrative flow diagram representing a process
200 to identify dependency relationships among components
of a system and to construct property evaluation summaries
associated with components identified as having dependency
relationships among them in accordance with some embodi-
ments. A property evaluation summary includes indicia of
property evaluations for one or more properties associated
with a component. Thus, for example, if a given component is
associated with three properties, then a property evaluation
summary corresponding to that given component provides
indicia of property evaluations for those associated three
properties.

Module 202 configures a computer system to identify com-
ponents that have a dependency relationship with each other.
For example, this may be done by scanning the code of each
component in a computer code based system for references to
other components in the system. In some embodiments, for
example, module 202 configures a computer system to iden-
tify dependency relationships among components that
include computer code functions. For example, a first com-
ponent that includes a first function is determined to depend
upon a second component that includes a second function if
the first function calls the second function. Alternatively, in
some embodiments, for example, module 202 configures a
computer system to identify dependency relationships among
components that include computer code class objects. For
example, a first component that includes a first class object is
determined to depend upon a second component that includes
a second class object if the first class object includes the
second class object.

Module 205 determines an optimal order of property evalu-
ation determinations among components. In some embodi-
ments, for example, property evaluation determinations are
performed for depended upon components before they are
performed for dependent components. Specifically, for
example, components may be ordered so that where a first
component depends upon a second component, the first and
second components are ordered with the second component
preceding the first component in the order. Moreover, in some
embodiments, a component having a larger number of depen-
dent components may be ordered ahead of its dependent
components in the component ordering. Module 208 config-
ures a computer system to produce a dependency graph infor-
mation structure in a computer readable storage device that
represents the determined dependency relationships and
ordering.

Module 210 configures a computer system to determine
property evaluations for the components of the system, and to
store the summaries of the property evaluations in a non-
transitory computer readable storage device in association
with indicia, such as component names, of the components
that they represent. In some embodiments, a property evalu-
ation for a given dependent component takes into account a
property evaluation for a depended upon component. More
particularly, for example, in some embodiments the module
210 uses a property deriver to configure a computer system to
evaluate a given property of a given component to determine
a property evaluation and to use the determined property
evaluation to determine a property evaluation for another
component that is dependent upon the given component.

20

25

30

35

40

45

50

55

60

65

8

Even more particularly, for example, in some embodiments
the module 210 configures a computer system to determine a
property evaluation for a property of a dependent component
based upon a property evaluation of the same property for a
component that that the dependent component depends upon.

FIG. 4 is an illustrative dependency graph information
structure 300 that is produced according to modules 202-210
of FIG. 3 and that is stored in a non-transitory computer
readable storage device in accordance with some embodi-
ments. The illustrative data structure 300 includes within it
the components A-E having associations between them 102'-
108' that correspond to the dependency relationships 102-108
described with reference to FIG. 2. The components A-E of
the example dependency graph information structure 300 are
respectively associated in the storage device with correspond-
ing property evaluation summaries ‘a’-‘e’. Each property
evaluation summary is associated in the storage device with a
corresponding component in the data structure 300. Specifi-
cally, the example data structure of FIG. 4 provides an asso-
ciation 302 between property evaluation summary ‘d’ and
component D; provides an association 304 between property
evaluation summary ‘e’ and component E; provides an asso-
ciation 306 between property evaluation summary ‘c’ and
component C; provides an association 308 between property
evaluation summary ‘b’ and component B; and provides an
association 310 between property evaluation summary ‘a’
and component A.

It will be appreciated that in this illustrative example, com-
ponents D and E have the fewest dependencies (none).
Whereas, component A has the largest number of dependen-
cies since itis dependent upon components B, C, D and E. The
data structure 300 provides associations between the summa-
ries that order the summaries in the component dependency
order, also referred to herein as a ‘sort order’ such that each
property evaluation summary is ordered relative to other sum-
maries according to the ordering determined for the compo-
nent with which it is associated. As explained above, in some
embodiments, the ordering of the summaries follows the
dependency relationships among the corresponding compo-
nents. In some embodiments, the data structure 300 includes
associations 312, 314 that indicate that property evaluation
summary ‘¢’ depends upon the summaries ‘d’ and ‘e’;
includes association 316 that indicates that property evalua-
tion summary ‘b’ depends upon the property evaluation sum-
mary ‘c’; and that includes association 318 that indicates that
property evaluation summary ‘a’ depends upon the property
evaluation summary ‘b’.

Determining Component Property Evaluation
Summaries

As explained more fully below, in some embodiments,
property evaluation summaries are determined in a sort order
in which summaries are determined for depended upon com-
ponents before summaries are determined for corresponding
dependent components. In some embodiments, the sort order
is atopological sort order defined by a dependency graph data
structure such as the structure 300. Thus, referring to the
example of F1G. 4, for example, the summaries ‘d” and ‘e’ are
determined before the property evaluation summary ‘c’. The
property evaluation summary ‘c’ is determined before the
property evaluation summary ‘b’. The property evaluation
summary ‘b’ is determined before the property evaluation
summary ‘a’.

FIG. 5 is an illustrative drawing representing, in general
terms, a process 400 to summarize property evaluations of a

US 9,032,376 B2

9

component in accordance with some embodiments. Module
402 configures a computer system to examine a component to
classify the component so as to identify one or more property
derivers to associate with the component. More specifically, a
non-transitory storage device 408 stores a component evalu-
ation information structure 410 that indicates associations
between component classifications and property derivers.
Module 404 configures a computer system to use the property
derivers determined to be associated with a component based
upon its classification to produce corresponding property
evaluations for the component. Module 406 produces a prop-
erty evaluation summary information structure 412 that stores
a property evaluation summary of the property evaluations
determined for a component in a non-transitory storage
device 414. It will be appreciated that different kinds of
components may potentially are associated with different
kinds of property derivers that determine different kinds of
property evaluations.

The first two columns of Table A below show an example
component evaluation information structure 410 stored in the
storage device 408 in accordance with some embodiments.
The first column sets forth classifications. Two different kinds
of example classifications are set forth in the first column:
function and class definition. The second column identifies
and has associations with four different property evaluation
derivers used to determine four different property evalua-
tions. Referring to Table A, the ‘function’ classification is
associated with three property derivers, and the “class defini-
tion’ classification is associated with one property deriver.
The third column of Table A shows examples of different
alternative property evaluations that can be determined using
the different property evaluation derivers.

TABLE A

Component
Classification

Possible Property

Property Derivers Evaluations

Function Property deriver checker to
determine whether this
function return a null pointer
value?

Property deriver checker to
determine whether this
function dereference its
argument?

Property deriver checker to
determine whether a return
value of this function is a
result of memory allocation
operation?

Property deriver checker to
determine a size of an
instantiated class in bytes

{yes, no, maybe}

Function {always, never,

sometimes }

Function {yes,no}

Size of instantiated class
in bytes

class definition’
(in some object
oriented
programming
language)

Table B sets forth some examples of potential inferences
concerning computer program code defects that can be
arrived at based upon certain property evaluations. These
inferences may provide indicia of code defects and/or code
vulnerabilities, for example.

TABLE B

Property Evaluations (deriver
determination)

Inference (for code calling the
function)

Yes - null pointer value?) If a function definitely can return a null
pointer value, the code calling the

function must handle that possibility

20

30

35

40

45

50

55

60

65

10
TABLE B-continued

Property Evaluations (deriver
determination)

Inference (for code calling the
function)

No - (null pointer value?) If a function definitely CAN NOT return
a null pointer value, the code calling the
function does NOT need to handle that
possibility

If a function may return a null pointer
value, the code calling the function must
handle that possibility

If a function dereferences its argument,
the code calling the function must ensure
that the argument’s value cannot be null
If a function dereferences its argument,
the code calling the function does NOT
need to ensure that the

argument’s value cannot be null

If a function dereferences its argument,
the code calling the function must ensure
that the argument’s value cannot be null
If a function performs a memory
allocation operation, the code calling the
function needs to ensure that the memory
is subsequently deallocated

If a function performs a memory
allocation operation, the code calling the
function does NOT need to ensure that
the memory is subsequently deallocated
Layout of memory in the code containing
the class depends on the size of the class.

Maybe - (null pointer value?)
Always - (dereference its
argument?)

Never - (dereference its
argument?)

Sometimes - (dereference its
argument?)

Yes - (memory allocation

operation?)

No - (memory allocation
operation?)

Size - (determine size
of instantiated class in bytes)

It will be appreciated, therefore, that component property
evaluations can provide indicia of potential sources of defects
and/or vulnerabilities within a system. Tests may be
employed based upon these property evaluations, to ascertain
whether such potential defects and/or vulnerabilities actually
exist. Component property evaluations, therefore, can be
used to determine appropriate testing strategies. For example,
if a first function has the property evaluation indicating that it
can return a null pointer, then it may be appropriate imple-
ment a test of whether a second function calling that first
function can handle the possibility of a returned null pointer.

Referring again to FIG. 5 and to Table A, assume for
example that module 402 configures a computer system to
parse code (not shown) of a currently selected component of
a system to determine a classification for the selected com-
ponent. Further, assume that the module 402 determines that
the currently selected component is to be classified as a func-
tion. Module 404 configures the computer system to refer-
ence the information indicated in Table A and to use a prop-
erty evaluation deriver corresponding to the determined
classification to determine property evaluations for the cur-
rently selected component. Module 406 configures the com-
puter system to produce a property evaluation summary struc-
ture that indicates the determined property evaluations for the
currently selected component.

Assume, for example, that module 402 determines that the
currently selected component is classified as a function.
Moreover, assume for example, that module 404 determines
that the function cannot return a null pointer value; that the
particular function sometimes dereferences its argument; and
that the return value of this particular function is not a result
of' a memory allocation operation. In that case, module 406
produces a property evaluation summary information struc-
ture 412 for the component that indicates that the component,
which has been classified as a function, cannot return a null
pointer value, sometimes dereferences its argument is not a
result of a memory allocation operation.

Table C shows example property evaluation summary
information structure 412 stored in the storage device 414

US 9,032,376 B2

11

corresponding to the example function classification in accor-
dance with the foregoing hypothetical example and in accor-
dance with some embodiments.

TABLE C

Component

Classification Property Evaluations (deriver determination)

Function Yes - (Can this function return a null pointer value?)

Function Sometimes - (Does this function dereference its
argument?)

Function No - (Is the return value of this function a result of

memory allocation operation?)

Still referring to FIG. 5 and to Table A, further assume for
example that the computer system configured according to
module 402 parses the code of another component and deter-
mines that the component is to be classified as a ‘class defi-
nition’. Module 404 configures the computer system to ref-
erence the information indicated in Table A and to use
property derivers corresponding to the determined ‘class defi-
nition’ classification to determine property evaluations for the
currently selected component. Module 406 configures the
computer system to produce a property evaluation summary
structure that indicates the determined property evaluations
for the currently selected component. Suppose, for example,
that module 404 determines that a given class definition has
an instantiated class size of 10K bytes. In that case, module
406 produces a property evaluation summary information
structure 412 for the component that indicates that the com-
ponent, which has been classified as a class definition, has an
instantiated class size of 10K bytes.

Table D shows example property evaluation summary
information structure 412 stored in the storage device 414
corresponding to the example “class definition’ classification
in accordance with the foregoing hypothetical example and in
accordance with some embodiments.

TABLE D

Component

Classification Property Evaluations (deriver determination)

class definition’ (in some
object oriented
programming language)

10K bytes - (Size of instantiated class in bytes)

It will be appreciated that the property evaluation summary
information structure 412 as instantiated in Tables C and D
contains mere summaries since the information does not
describe the component in detail but merely indicates some
properties of the components. It will be appreciated that a
component can have multiple classifications, e. g, both a
function and class definition.

FIG. 6A is an illustrative flow diagram that shows addi-
tional details of a process 500 to produce a property evalua-
tion for a selected component in accordance with some
embodiments. In particular, the process 500 represents cer-
tain details of module 404 of FIG. 5 in accordance with some
embodiments. It will be appreciated that the process 500 of
FIG. 6A is described relative to a selected component, and
that a component evaluation information structure 410 may
classify the selected component as being associated with one
or more property derivers. Moreover, it will be appreciated
that respective property evaluations produced using such
derivers may depend upon corresponding property evalua-
tions determined using the same derivers but for a different
component that the currently selected component is depen-
dent upon.

25

30

35

40

45

50

55

60

12

Decision module 502 configures a computer system to
determine whether there is another property deriver indicated
in structure 410 that has not yet been invoked to configure a
computer system to determine a property evaluation for a
currently selected component. In response to a determination
that there are no more property derivers to be invoked, then
the process 500 ends and a next component may be selected
for evaluation according to the processes of FIG. 5. On the
other hand, inresponse to a determination that there is another
property deriver to be invoked for the currently selected com-
ponent, then control flows to module 504, which configures
the computer system to select a next property evaluation
deriver from the component evaluation information structure
410.

Next, control flows to decision module 512, which config-
ures the computer system to determine whether the selected
component is dependent upon another component and to
identify that depended upon component. In some embodi-
ments, as described more fully below, for example, a deter-
mination as to whether the currently selected component is
dependent upon another component is made by scanning
code of the selected component to identify a call or a refer-
ence to another component and by using an identified call or
reference to another component as an indication that the
currently selected component is dependent upon the called or
referenced component. Alternatively, for example, in other
embodiments as described more fully below, for example, a
determination as to whether the currently selected component
is dependent upon another component is made through refer-
ence to a component dependency graph data structure of the
general type shown in FIG. 4, for example. Such component
dependency graph data structure indicates dependency rela-
tionships that involve the currently selected component.

Inresponse to a determination by decision module 512 that
the currently selected module is not dependent upon another
component, control flows to module 508, which uses the
currently selected property deriver to configure the computer
system determine a property evaluation for the selected prop-
erty. Next, control flows to module 510, which configures the
computer system to communicate the property evaluation
determined for the selected property to module 406 for inclu-
sion in a property evaluation summary 412 associated with
the currently selected component. Control then flows back to
decision module 502.

Inresponse to a determination by decision module 512 that
the currently selected module is dependent upon another
component, control flows to module 514, which configures
the computer to obtain a property evaluation determined for
the currently selected property with respect to the identified
depended upon component. In response to obtaining a prop-
erty evaluation for the currently selected property, for the
identified depended upon component control flows to module
508, which uses the currently selected property deriver to
configure the computer system to determine a property evalu-
ation for the selected property. It will be appreciated that
where a property evaluation is obtained for a depended upon
component, the selected property deriver configures the com-
puter system to take into account the obtained property evalu-
ation in determining a property evaluation for the currently
selected component, which depends upon that depended
upon component. Control flow then proceeds to modules 510
and 502 as described above.

FIG. 6B1 is an illustrative flow diagram representing in
general terms an example property evaluation deriver process
600 in accordance with some embodiments. Module 602
configures a computer system to parse code of a selected
component. Parsing code typically involves traversal of one

US 9,032,376 B2

13

or more code paths within a component. Module 604 config-
ures a computer system to determine a property evaluation in
the course of the parsing of the code. Module 606 configures
a computer system to store a determined property evaluation
in a property evaluation summary information structure 412
that corresponds to the selected component. It will be appre-
ciated that multiple different property evaluation derivers
may be invoked to derive multiple different property evalua-
tions for a selected component, and that a summary of these
multiple property evaluations may be stored in the informa-
tion structure 412.

FIG. 6B2 is an illustrative flow diagram representing in
general terms a process 620 of module 604 of FIG. 6B1 in
accordance with some embodiments. Decision module 622
configures the computer system to determine whether a
propagated evaluation corresponding to a depended upon
component has been propagated to a currently selected com-
ponent for which a property evaluation is being determined.
In response to a determination that a property evaluation
corresponding to a depended upon component has been
propagated to the currently selected component, decision
module 624 configures the computer system to determine
whether the propagated property propagates to a property
evaluation determination for the currently selected compo-
nent. In response to a determination that the property evalu-
ation propagated to the currently selected component is
propagated to a property evaluation determination for the
currently selected component, then module 626 configures
the computer system to determine the property evaluation
corresponding to the currently selected component, taking
into account the property evaluation corresponding to a
depended upon component that has been propagated to the
currently selected component. In response to decision mod-
ule 622 determining that there is no property evaluation cor-
responding to a depended upon component propagated to the
currently selected component, then module 628 configures
the computer system to determine the property evaluation
without taking into account a property evaluation correspond-
ing to such depended upon component. Likewise, in response
to decision module 624 determining that there is no property
evaluation propagated to the current property evaluation
determination, then module 628 configures the computer sys-
tem to determine the property evaluation without taking into
account a property evaluation corresponding to a depended
upon component.

Persons of ordinary skill in the art will understand that
details of individual property evaluation derivers depend
upon contextual factors such as the property evaluation to be
performed and the component to be evaluated. Moreover
persons of ordinary skill in the art will understand how to
implement property evaluation derivers, which are a particu-
lar kind of checker program, used to determine property
evaluations. Therefore, property evaluation derivers and the
manner in which property derivers take into account property
evaluations determined for depended upon components form
no part of the present invention and need not be described in
detail herein.

In the following explanation, it will be appreciated that the
terms “descending” and “ascending” are to be understood in
the context of the disclosed embodiments. In this context, the
term “descending” indicates a code path in a direction from a
dependent component to a depended upon component. In this
context, the term “ascending” refers to a code path in a direc-
tion from a depended upon component to a dependent com-
ponent.

FIGS. 6C1-6C2 are illustrative flow diagrams that repre-
sent a process to obtain a property evaluation that involves

5

20

25

30

35

40

45

50

55

60

65

14

following a descending code path (FIG. 6C1) and an ascend-
ing code path (FIG. 6C2) to obtain a property evaluation for a
component in accordance with some embodiments. In par-
ticular, the process represents certain aspects of some
embodiments of the module 514 of FIG. 6A in accordance
with some embodiments. The drawings in FIGS. 6C1-6C2
use the example components A-E of FIG. 2 and FIG. 4 and
their dependency relationships to illustrate the recursive
nature of the process 530. The process of 530 is recursive and
occurs in component-by-component stages.

FIG. 6C1 illustrates a component-by-component flow path
that proceeds in stages, A, to B, to C,to D, and E ,, compo-
nent-by-component through the components of example sys-
tem 200 in descending order of dependency, from a currently
selected component A through to base components D and E,
to identity the base property evaluation(s) upon which prop-
erty evaluations for the other components depend. As used
herein, a base component within a system is a component that
acts as a depended upon component but does not act as a
dependent component.

FIG. 6C2 illustrates a component-by component path that
proceeds in stages, D, and E, to C, to B, to A ,, component-
by-component through the components of example system
200 in ascending order of dependency, from base components
D and E to the currently selected component A, to determine
and propagate property evaluations from the base compo-
nents D and E to the currently selected component A.

Thus, in combination, FIGS. 6C1-FIG. 6C2 illustrate that
in effect, the process 530 flows or “ripples” through the sys-
tem 200, from one component to the next, in both descending
and ascending order according to dependency relationships
among components.

Referring now to FIG. 6C1, there are shown five descend-
ing stages. A first descending stage, labeled A ;, corresponds
to component A. A second descending stage labeled B, cor-
responds to component B. A third descending stage labeled
C, corresponds to component C. Fourth and fifth descending
stage labeled D, and E , corresponds to components D and E.

In the following description, it will be appreciated that
certain modules of the illustrative process 500 are invoked
multiple times in order to determine property evaluations for
each of the components A-E. Furthermore, in order to sim-
plity the following explanation reference is made to only a
single property evaluation although it will be appreciated that
each invocation of the process 500 may involve multiple
property evaluations. Moreover, it will be understood that
when the process 500 is invoked for a dependent component,
it must await propagation of property evaluations for the
depended upon component(s) upon which it depends. Fur-
thermore, it will be understood that in the example involving
the combination of FIGS. 6C1-6C2, dependency relation-
ships are identified during a descending traversal of compo-
nents, and property evaluations are determined during an
ascending traversal of components.

Still referring to FIG. 6C1, during the first descending
stage, labeled A , decision module 512 scans the code 513A
of component A, as indicated by the dashed lines, and deter-
mines that component A is a dependent component that is
dependent upon component B. Referring to both stages A,
and B, in response to the determination at stage A, that
component A is a dependent upon component B, module 514
of stage A, causes control flow to flow to decision module
512 in stage B, which configures the computer system to
scan the code 513B of component B, indicated by dashed
lines, and to determine that module B is dependent upon
component C. Referring to both stages B ;and C , in response
to the determination at stage B, that component B is depen-

US 9,032,376 B2

15

dent upon component C, module 514 of in stage B, causes
control flow to flow to decision module 512 in stage C,.
Module 512 in stage C, configures the computer system to
scan the code 513C of component C, indicated by dashed
lines, and determines that module C is dependent upon both
component D and component E. Referring to stages C,, D,
and E,, in response to the determination at stage C, that
component C is dependent upon components D and E, control
flows, to module 514 of stage C, which in turn, causes
control to flow to first to decision module 512 in stage D, and
subsequently, to decision module 512 in stage E,,. Decision
module 512 of stage D, configures the computer system to
scan the code 513D of component D, indicated by dashed
lines, and to determine that module D is a base component
that is not dependent upon another component. Decision
module 512 of stage E, configures the computer system to
scan the code 513E of component E, indicated by dashed
lines, and to determine that module E is a base component that
is not dependent upon another component.

Referring now to FIG. 6C2, there are shown four ascending
stages. A first and second ascending stages, labeled D, and E ,
corresponds to components D and E. A third ascending stage
labeled C,, corresponds to component C. A fourth ascending
stage labeled B, corresponds to component B. A fifth ascend-
ing stage labeled A , corresponds to component A

Still referring to FIG. 6C2, in accordance with the example
component relationships of FIGS. 2 and 4, during the ascend-
ing stage, labeled D, module 508 configures the computer
system to use a currently selected property deriver 600 asso-
ciated with the component evaluation information structure
410 to configure the computer system to parse and evaluate
the code 513D of component D), produce a property evalua-
tion 650D for component D, and store the produced property
evaluation in a property evaluation summary information
structure 412D associated with component D.

Similarly, during the ascending stage, labeled E,, module
508 configures the computer system to use the selected prop-
erty deriver associated with the component evaluation infor-
mation structure 410 to configure the computer system to
parse and evaluate the code 513E of component E, produce a
property evaluation 650E for component E, and store the
produced property evaluation in a property evaluation sum-
mary information structure 412E associated with component
E.

Referring to ascending stages D, E , and C , the respective
property evaluations 650D and 650F that are determined in
ascending stages D, and E, for components D and E are
propagated to module 514 of stage C,. Module 508 of stage
C,, configures the computer system to use the selected prop-
erty evaluation deriver 600 associated with the component
evaluation information structure 410 to configure the com-
puter system to parse and evaluate the code 513C of compo-
nent C, produce a property evaluation 650C for component C,
and to store the produced property evaluation in a property
evaluation summary information structure 412C associated
with component C. In the course of the traversal, module 514
of stage C, configures the computer system to provide the
respective property evaluations 650D and 650E determined
for components D and E to the deriver 600, which in turn,
associates the property evaluations with code 513C1 within
component C. The association, indicated by respective lines
651D and 651F between property evaluations 650D and 650E
and code 513C1 of component C, are provided in a computer
readable storage device. Thus, the deriver 600 can take into
account the property evaluations 650D and 650E determined

20

25

30

35

40

45

50

55

60

65

16

for components D and E, which are depended upon by com-
ponent C, in determining a property evaluation for compo-
nent C.

Referring to ascending stages C, and B, the property
evaluation 650C that is determined in ascending stage C, for
component C is propagated to module 514 of stage B,,. Mod-
ule 508 of stage B, configures the computer system to use the
selected property evaluation deriver 600 associated with the
component evaluation information structure 410 to configure
the computer system to parse and evaluate the code 513B of
component B, produce a property evaluation 650B for com-
ponent B, and store the produced property evaluation in a
property evaluation summary information structure 412B
associated with component B. In the course of the traversal,
module 514 of stage B, configures the computer system to
provide the property evaluation 650C determined for compo-
nent C to the deriver 600, which in turn, associates the prop-
erty evaluation with code 513B1 within component B. The
association, indicated by line 651C between property evalu-
ation 650C and code 513B1 of component B, is provided in a
computer readable storage device. Thus, the deriver 600 can
take into account the property evaluation 650C determined
for component C, which is depended upon by component B,
in determining a property evaluation for component B.

Referring to ascending stages B, and A, the property
evaluation 650B that is determined in ascending stage B, for
component B is propagated to module 514 of stage A ,. Mod-
ule 508 of stage A, configures the computer system to use the
selected property evaluation deriver 600 associated with the
component evaluation information structure 410 to configure
the computer system to parse and evaluate the code 513A of
component A, produce a property evaluation 650A for com-
ponent A, and store the produced property evaluation in a
property evaluation summary information structure 412A
associated with component A. In the course of the traversal,
module 514 of stage A, configures the computer system to
provide the property evaluation 650B determined for compo-
nent B to the deriver 600, which in turn, associates the prop-
erty evaluation with code 513A1 within component A. The
association, indicated by line 650A between property evalu-
ation 650B and code 513 A1 of component A, is provided in a
computer readable storage device. Thus, the deriver can take
into account the property evaluation 650B determined for
component B, which is depended upon by component A, in
determining a property evaluation for component A.

Alternatively, rather than traverse both a component-by-
component descending path and a component-to-component
ascending path as described with reference to FIGS. 6C1-
6C2, a dependency graph data structure can be used to guide
an ascending component-to-component flow during which
property evaluations are determined, thus obviating the need
for a descending path. More specifically, for example, the
example dependency graph 300 of FIG. 4 can be used to
indicate dependency relationships among components so that
the component-by-component path from components D and
E shown in FIG. 6C2 can be traversed without the need to first
traverse the descending path of FIG. 6C1 to discern the rela-
tionships among components.

Change Impact Analysis

As explained below, a comparison of property evaluations
determined for corresponding components before and after a
change to one or more components can be used to provide an
indication of an impact of a change to a depended upon
component upon a dependent component. By way of expla-
nation, it will be appreciated that a property evaluation for a

US 9,032,376 B2

17

component may change when the code of the component is
changed. Moreover, it will be appreciated that that a change in
a property evaluation for a component can be indicative of a
change in component behavior resulting from such compo-
nent code change. Thus, by extension, a change in a property
evaluation that is propagated for use as input to a deriver to
determine a property evaluation for a dependent component
may resultin a change in the property evaluation for a depen-
dent component. Therefore, as explained more fully below,
propagation of a property evaluation determined by a deriver
for a depended upon component for use as input to the deriver
in determining a property evaluation for a dependent compo-
nent can be used to provide an indication of an impact of a
change in the depended upon component upon the depen-
dents component.

FIG. 7 is an illustrative drawing representing relationships
among the first and second dependency graph data structures
602-1, 602-2 produced and stored, respectively, in a non-
transitory computer readable storage device, property sum-
maries al-el and a2-e2 associated with the respective data
structures and a comparator structure 604 configured to com-
pare the property summaries in accordance with some
embodiments. In this illustrative example, components
A1-E1 and components A2-E2 have the illustrative depen-
dency relationships shown for the components in FIG. 4.
Moreover, in this example, it is assumed that components
A1-E1 are instantiations of certain components at some given
time, and components A2-E2 are instantiations of substan-
tially the same, or at least corresponding, components, at
some different time. It is assumed in this example that some
change has been made to one or more of the components
between the two times such that one or more of the compo-
nents A1-E1 is not identical to one or more of the correspond-
ing components A2-E2. Thus, for example, the first version
may be an earlier version of a collection of components and
the second version may be a later, modified version of the
collection of components. For example, for software based
components, the code of one or more of the components
A1-E1 may be modified to be different from the code of one
or more of the corresponding components A2-E2.

The process 200 of FIG. 3 is used to generate the first
dependency graph data structure 602-1 and to produce the
second dependency graph data structure 602-2. The processes
400,500 of FIGS. 5, 6 A and 6C are used to produce property
summaries al-el, which correspond to components Al1-F1,
and to produce property summaries a2-e2, which correspond
to components A2-E2. A computer system is configured to
implement a comparator 604 to compare corresponding prop-
erty summaries to determine whether the individual proper-
ties match. Specifically, the comparator 604 compares prop-
erty summaries al and a2; compares property summaries b1
and b2; compares property summaries ¢l and c2; compares
property summaries d1 and d2; and compares property sum-
maries €l and e2. In some embodiments, checksums are
computed or hashes are computed to represent the summaries
s0 as to facilitate ease of comparison.

A mismatch of properties of corresponding property sum-
maries indicates that a change in corresponding components
(e.g., a code change) has an impact upon a component prop-
erty. That changed property, for example, may be indicative of
a change in behavior of a component. It will be appreciated
that since the process 500 can result in a property change
rippling up through the property summaries from a property
evaluation summary of a changed depended-upon component
to the property summaries of components that depend upon
the changed component.

20

25

30

35

40

45

50

55

60

65

18

For example, assume that change occurs as between com-
ponent D1 and component D2 such that D1 and D2 are dif-
ferent, e.g., a code change. Moreover, assume that the change
results in components D1 and D2 having one or more corre-
sponding property evaluations that differ from each other.
(Recall that each component may be associated with multiple
property derivers and multiple corresponding property evalu-
ations.) Further, for example, assume that processes 400, 500
produce property evaluation summaries d1 and d2 that differ
due to the one or more differing property evaluations as
between components D1 and D2. Still further, for example,
assume that processes 400, 500 produce property evaluation
summaries c1 and c2 that also differ due to the one or more
differences in property evaluation summaries d1 and d2.
Thus, for example, differences between the property evalua-
tion summaries ¢l and c¢2 provides an indication that the
change or difference between components 1D and D2 has an
impact upon components C1 and C2 even though components
C1 and C2 are themselves unchanged. Thus, in this example,
the result of the comparison of property summaries c1 and c2
indicates that the change as between D1 and D2 does impact
components C1 and C2.

Conversely, assume instead, for example, that although a
change as between components D1 and D2 results in differ-
ences between property evaluation summaries d1 and d2,
property summaries c1 and c¢2 match. It will be appreciated
that the matching property summaries c1 and ¢2 indicates that
changes in one or more of the properties of D1 and D2 does
not impact properties of C1 and C2. Thus, in this alternate
example, the result of the comparison of property evaluation
summaries c¢1 and c2 indicates that the change as between D1
and D2 does not impact components C1 and C2.

Detecting an impact of a change to a depended upon com-
ponent that has been changed upon a dependent component
that has not been changed can be important to development
and testing of a system. For example, in response to such
change impact, additional testing and/or code review may be
performed; code may be refactored (e.g., rewritten or
changed in structure without changing functions); human
auditing of code may be performed; or a risk assessment may
be performed to assess the costs of further modifying the code
as compared with the risk of not modifying it. Thus, change
impact analysis can be used to identify a dependent compo-
nent that may require further attention because it is impacted
by a change in an depended upon component even though the
component has not itself changed from one version to the
next. Conversely, change impact analysis can be used to avoid
unnecessary component testing by determining what depen-
dent components are not impacted by a change to a dependent
component with which they have a dependency relationship.

EXAMPLES

The following examples involve systems that include mul-
tiple components that have dependency relationships. The
components in these examples are implemented with com-
puter program code. Sequences of versions of the systems are
shown in which one or more components changes from one
version to the next. The examples illustrate the use of change
impact analysis to determine whether a change to a depended
upon component has an impact upon a dependent component
in accordance with some embodiments.

The following examples involve components that include
classes that include functions. Table E describes their depen-
dency relationships among the components.

US 9,032,376 B2

19
TABLE E
Class Description
Class Bla which is some base class
Class Bar with method function2 which instantiates an object of class
Class Foo \]?vllih method functionl which calls function2 of class Bar

It is assumed in these examples that the example compo-
nent evaluation information structure of Table A is used to
evaluate the components of the examples.

FIG. 8 is an illustrative drawing representing a dependency
graph data structure 700 stored in a non-transitory computer
readable storage device that sets forth dependency relation-
ships among components Foo, Bar and Bla in accordance
with some illustrative examples. The process of 200 illus-
trated with reference to FIG. 3 can be used to produce the
information structure 700 that indicates the dependency rela-
tionships among these components. Component Foo 702 is
dependent upon component Bar 704. Component Bar 704 is
dependent upon component Bla 706.

Code Example 1

In this example, a sequence of three changes occur to the
components as follows: original version—revision 1—>revi-
sion 2—revision 3

FIG. 9A shows an illustrative original version 802 of first
example code stored in a non-transitory computer readable
storage device.

FIG. 9B shows an illustrative first revision 804 of first
example code stored in a non-transitory computer readable
storage device.

FIG. 9C shows an illustrative second revision 806 of first
example code stored in a non-transitory computer readable
storage device.

FIG. 9D shows an illustrative third revision 808 of first
example code stored in a non-transitory computer readable
storage device.

A comparison of FIGS. 9A-9B is used to illustrate that a
change in code of'a component does not necessarily result in
achange in a property evaluation of the component. Referring
to FIGS. 9A and 9B, as between the original version 802
shown in FIG. 9A and the first revision 804 shown in F1G. 9B,
a change is made to the code in that a statement to cause a
printout of an error message 810 is added to function2 () as it
appears in the first revision 804.

FIG. 10A shows a dependency graph data structure 902A
produced in computer readable storage in accordance with
the process 200 of FIG. 3 to represent the original version
802. FIG. 10A also shows a dependency graph data structure
902B produced in computer readable storage in accordance
with the process 200 of FIG. 3 to represent the first revision
804. In accordance with the processes 400, 500 of FIGS.
5-6A, property evaluation summary Blal is produced that
corresponds to component Blal; property evaluation sum-
mary Barl is produced that corresponds to component Barl;
and property evaluation summary Fool is produced that cor-
responds to component Fool. Also, in accordance with the
process 400 of FIG. 5, property evaluation summary Bla2 is
produced that corresponds to component Bla2; property
evaluation summary Bar2 is produced that corresponds to
component Bar2; and property evaluation summary Foo2 is
produced that corresponds to component Foo2.

FIG. 10B shows certain details of a property evaluation
summary data structure produced in accordance with the
processes 400, 500 of FIGS. 5-6 A for the original version 802

w

20

25

30

35

40

45

55

60

20

and the first revision 804. In this example, the component
evaluation information structure of Table A is used to produce
the property evaluation information structure summaries. The
evaluation structure of Table A includes property evaluation
deriver that asks whether the function can return a null value.
Focusing only on function2 (), the function that changed as
between the original version 802 and the first revision, 804, it
can be seen that the property evaluation as to the null value for
Barl and property evaluation Bar2 match (i.e. both are “not
null”) despite the change in code relating to function2 ().
Thus, it will be appreciated that a change in code of a
depended upon component does not necessarily have a prop-
erty evaluation change impact upon a dependent component.

Moreover, the property evaluation for function2 () for Barl
is propagated to the deriver invoked to determine a property
evaluation for Fool, and the deriver associates the propagated
property evaluation with and function2 () code in Fool.
However, in this case, the deriver determines that Fool does
not utilize function2 (), since function2 () has a pointer to
component Bar and does not actually instantiate component
Bar, and therefore the propagated property evaluation for
Fool has no impact upon the property evaluation of Fool.
Similarly, the property evaluation for function2 () for Bar2 is
propagated to the deriver invoked to determine a property
evaluation for Foo2, and the deriver associates the propagated
property evaluation with and function2 () code in Foo2. For
the same reason as above, the deriver determines that Foo2
does not utilize function2 (), and therefore, the propagated
property evaluation for Foo2 has no impact upon the property
evaluation of Foo2.

It will be appreciated that in some embodiments, multiple
the property evaluation summaries are compared as indicated
in FIG. 10A and that these properties evaluation summaries
each may relate to multiple properties. However, for the pur-
pose of simplifying the explanation, only a property evalua-
tion comparison with respect to the null pointer value for the
changed Bar component is addressed here.

A comparison of FIGS. 9B-9C is used to illustrate a change
in code of a depended upon component that impacts a prop-
erty of the component but does not impact a corresponding
property of a dependent component. Referring now to FIGS.
9B-9C, as between the first revision 804 shown in FIG. 9B
and the second revision 806 shown in FIG. 9C, the code 812
that specifies instantiation of the class member Bla (and thus
determines the type of the return value) in function2 () is
moved into the body of the if-condition 810 as it appears in the
second revision 806.

FIG. 11 A shows a dependency graph data structure 1002A
produced in accordance with the process 200 of FIG. 3 to
represent the first version 804. FIG. 11A also shows a depen-
dency graph data structure 1002B produced in accordance
with the process 200 of FIG. 3 to represent the second revision
806. In accordance with the process 400 of FIG. 5, property
evaluation summary Bla3 is produced that corresponds to
component Bla3; property evaluation summary Bar3 is pro-
duced that corresponds to component Bar3; and property
evaluation summary Foo3 is produced that corresponds to
component Foo3. Property evaluation summary Bla2, prop-
erty summary Bar2 and property evaluation summary Foo2
were produced previously as described above.

When the property deriver of Table A that determines
whether a function can return a null pointer is directed to
function2 () in a second revision 806, it determines that the
function2 () in component Bar3 now has the property “return
may be null”. The reason for the “return may be null” output
is that function2 () in the second revision 806 has two code
paths: one code path initializes the return value and the other

US 9,032,376 B2

21

does not. Thus, because the property evaluation relating to
return of the null pointer has changed, the property evaluation
summary Bar3 for the second revision 806 of function2 () is
different from and does not match the property evaluation
summary produced for the first version 804. In accordance
with the processes of FIGS. 5-6A, the property evaluation
determined for function2 () for component Bar3 is propa-
gated to component Foo3, and the deriver associates that
property evaluation with function2 () code in Foo3. Thus, in
this example, function2 () within Foo3 now also has the
property “return may be null”, since component Foo3 calls
function2 (). However, since component Foo3 contains no
code that actually utilizes function2 (), the property deriver of
Table A that determines whether a function can return a null
pointer determines that the null pointer property evaluation
for Foo3 is unchanged despite the propagation of a changed
property evaluation for function2 () for component Foo3. In
other words, the property evaluation summary Foo2 is deter-
mined to match the property evaluation summary Foo3
despite the propagation of a changed property evaluation for
function2 () to Foo3.

Referring to FIG. 6B2, it will be understood that although
in this case decision module 622 determined that the “return
may be null” property evaluation is propagated to Foo3, deci-
sion module 624 determines that such property evaluation is
not propagated to the corresponding property evaluation of
component Foo3, since Foo3 contains no code that actually
utilizes function2 ().

FIG. 11B shows certain details of property evaluation sum-
mary data structures produced in accordance with the pro-
cesses 400,500 of FIGS. 5-6A for the first version 804 and the
second revision 806. In this example, again, the component
evaluation information structure of Table A is used to produce
the property information structure summaries. Focusing
again only on function2 (), the function that changed as
between the first revision 804 and the second revision, 806, it
can be seen that the property evaluation summary Bar3 as to
the null value is changed relative to the evaluation summary
Bar2. However, as explained above, the change to the prop-
erty evaluation summary Bar3 relative to function2 () has no
impactupon the property evaluation summary of Foo3, which
still matches the property evaluation summary Foo2.

Thus, it will be appreciated that a property evaluation
change as to a depended upon component does not necessar-
ily result in a corresponding change to the same property
evaluation in a dependent component. Again, it will be under-
stood that in some embodiments each of the multiple the
property evaluation summaries are compared as indicated in
FIG. 11A and that these properties evaluation summaries
each may relate to multiple property evaluations. However,
for the purpose of simplifying the explanation, only a prop-
erty evaluation summary comparison with respect to the null
pointer value for the changed Bar component is addressed
here.

A comparison of FIGS. 9C-9D is used to illustrate a change
in code that does not itself execute that can impact property
evaluation of a component. Referring to FIGS. 9C-9D, as
between the second revision 806 and third revision 808 of the
source code, the type of the class member Bla is changed from
“int” 814 in the second revision 806 to “long™ 816 in the third
revision 808. It will be appreciated that in some computer
systems, different size memory allocations are required for
int type values and for long type values. For example, in some
systems, an int type value has 4 bytes and a long type value
has 8 bytes. Thus, a change of class object bla from int type in
the second revision 806 to long type in the third revision 808
results in a change in memory allocation size.

20

25

30

35

40

45

50

55

60

65

22

Focusing only on the property deriver of Table A that
determines the size of an object in bytes and on the compo-
nent Bla, the determined property evaluation is size=4 bytes
for Bla3 in the second revision 806 is 4 bytes, and the deter-
mined property evaluation is size=8 bytes for Bla4 in the third
revision 808. Accordingly, the processes, 400, 500 arrive a
Foo3 property evaluation summary that is different from the
Food property summary as to instantiated class size as indi-
cated in FIG. 12B. A comparison of the Foo3 and Foo4
property evaluation summaries, therefore, indicates that they
do not match.

Moreover, it will be appreciated that in this example, com-
ponent Bar instantiates object Bla, and therefore the change in
instantiated class size as between Bla3 and Bla4 results in a
change in instantiated class size as between Bar3 and Bar4 as
indicated in FIG. 12B1. The property evaluations for Bla3 and
Bla4 are propagated to Bar3 and Bard4, respectively. In this
case, the property deriver of Table A that determines the size
of'an object in bytes determines different sizes for Bar3 and
Bard4, and therefore, different property evaluations for Bar3
and Bard4. Thus, a change in the instantiated class size prop-
erty of the depended upon component Bla as between the
second and third revisions 806, 808 has an impact upon the
instantiated class size property of the Bar dependent compo-
nent as between the second and third revisions 806, 808, as
indicated by changed property summaries as between Bar3
and Bar4.

However, in this example, the instantiated class size prop-
erty of the dependent component Foo as between the second
and third revisions 806, 808 is not impacted by the change in
the instantiated class size properties of the Bla and Bar com-
ponents. In particular, the function2 () has a pointer to com-
ponent Bar and does not actually instantiate component Bar,
and therefore, does not actually instantiate Bla. Therefore,
Foo is not classified as a “class definition” and the object size
property deriver is not invoked for component Foo. Thus, the
property summaries Foo3 and Foo4 match, indicating no
property evaluation impact resulting from the change in Bla.
For the purpose of simplifying the explanation, only a prop-
erty evaluation summary comparison with respect to the
changed the Bla and Bar components is addressed here.

Code Example 2

FIG. 13A shows an illustrative original version 1202 of
second example code stored in a non-transitory computer
readable storage device.

FIG. 13B shows an illustrative revision 1204 of second
example code stored in a non-transitory computer readable
storage device.

A comparison of FIGS. 13A-13B is used to illustrate a
change in code of a depended upon component that impacts a
property evaluation of the depended upon component that
does have an impact on a corresponding evaluation property
of a dependent component that is dependent upon the
changed depended upon component. Note that that the code
in FIGS. 13A-13B is the same as the code in FIGS. 9B-9C
except that in FIGS. 13A-13B in component Foo, void is
replaced by Bla* and ‘return’ is added to ‘return
bar—function2 ()’. The addition of ‘return’ indicates that the
bar->function2 ()returns a value. The addition of Bla* is
required in C++to declare the object that is returned, in this
case Bla*. Thus, it will be appreciated that functionl ()in
component Foo is dependent upon function2 ()in Bar. Details
of the code in FIGS. 13A-13B that are the same as that of
FIGS. 9B-9C will not be explained again.

US 9,032,376 B2

23

FIG. 14 A shows a dependency graph data structure 1302A
produced in accordance with the process 200 of FIG. 3 to
represent the original version 1202 shown in FIG. 13A. FIG.
14A also shows a dependency graph data structure 1302B
produced in accordance with the process 200 of FIG. 3 to
represent the revision 1204 shown in FIG. 13B. FIG. 14B
shows that, in accordance with the processes 400, 500 of
FIGS. 5-6 A, property evaluation summary Bla5 is produced
that corresponds to component Bla5; property evaluation
summary Bar5 is produced that corresponds to component
Bar5; and property evaluation summary Foo5 is produced
that corresponds to component Foo5. In addition, property
evaluation summary Bla6 is produced that corresponds to
component Bla6; property evaluation summary Bar6 is pro-
duced that corresponds to component Bar6; and property
evaluation summary Foo6 is produced that corresponds to
component Foo6.

As will be appreciated from the above explanation with
reference to FIGS. 9B-9C, the addition of the code 812 results
in the property deriver of Table A that determines whether a
function can return a null pointer determines property evalu-
ations for Bar5 and Bar6 of FIGS. 13A-13B that do not match.
Bar5 has the property not null, and Bar6 has the property
evaluation “may be null”, which means that the change as
between components Bar5 and Bar6 has an impact upon a
property of the component Bar. As explained above, the
respective property evaluation determined for function2 ()
for Bar5 is propagated to Foo5 and is associated with the code
in Foo5 that corresponds to function2 (). Similarly, the
respective property evaluation determined for function2 ()
for Bar6 is propagated to Foo6 and is associated with the code
in Foo5 that corresponds to function2 (). Now, with the
“return” code associated with function2 () in component Foo
in FIGS. 13A-13B, the value returned to Foo by function2 ()
in Bar actually is utilized by Foo. As a result, the property
deriver of Table A that determines whether a function can
return a null pointer this time does consider the respective
property evaluations for function2 () that are propagated for
Bar5 and Bar6.

In other words, with the addition of the “return” code in
Foo5 and Foo6, the respective propagated property evalua-
tions from Bar5 and Bar6 that the deriver associates with the
function2 () code in Foo5 and Foo6, impacts the property
evaluation outcomes for respective components Foo5 and
Foo06. As aresult, in this example, the property deriver deter-
mines that Foo5 has the property evaluation “not null” since
the function2 () in Foo5 has the property “not null” and
determines that Foo6 has the property evaluation “may be
null” since the function2 () in Foo6 has the property “may be
null”. Thus, the property evaluation summary Foo5 does not
match the property evaluation summary Foo6, which indi-
cates that change as between the components Bar5 and Bar6
has an impact upon a property evaluation of Foo. For the
purpose of simplifying the explanation, only a property evalu-
ation summary comparisons with respect to the changed the
Bla and Foo components are addressed here.

Referring to FIG. 6B2, it will be understood that in this case
decision module 622 determined that the “not null” property
evaluation is propagated to component FooS and that the
“may be null” property evaluation is propagated to compo-
nent Foo6, and that decision module 624 determines that such
property evaluations are propagated to the corresponding
property evaluations for components Foo5 and Foo6, since
the addition of the “return” statement results in FooS and
Foo6 containing code that actually utilizes function2 ().

Referring to FIGS. 5-6A and FIGS. 13A-13B, it will be
appreciated that in the course of determining property evalu-

20

25

30

35

40

45

50

55

60

65

24

ations for dependent component Foo, the code of component
Foo is parsed to ascertains that the Foo code structure indi-
cates a dependency of functionl () in component Foo upon
function2 () in component Bar.

Moreover, in the course of determining a property evalua-
tion for component Foo, a property evaluation associated with
function2 () generated for component Baris received as input
for such determination. The change in Bar, with the addition
of'the code 812 as between the original version 1202 and the
revision 1204, has an impact upon the property evaluation of
Foo in the revision 1204. In particular, different values for
function2 () are returned through Bar in the original version
1202 and the revision 1204. Thus the example of FIGS. 13A-
13B illustrates a change in code of a depended upon compo-
nent Bar that has an impact upon code of the dependent
component Foo. The processes of FIGS. 5-6 A recognize that
change impact and encode indicia of the change impact into
the respective summaries Foo5, Foo6 illustrated in FIG. 14B.

Hardware Environment

FIG. 15 shows an illustrative diagrammatic representation
of a more particularized computer system 1500 in the
example form, to implement the generalized computer sys-
tem of FIG. 15. The computer system 1500 can comprise, for
example, can be configured to implement a static analysis tool
including property deriver checkers, for example. In alterna-
tive embodiments, the computer system operates as a standa-
lone device or may be connected (e.g., networked) to other
machines. In a networked deployment, the machine may
operate in the capacity of a server or a client machine in
server-client network environment, or as a peer machine in a
peer-to-peer (or distributed) network environment. The
machine may be a server computer, a client computer, a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or oth-
erwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the meth-
odologies discussed herein.

The example computer system 1500 includes a processor
1502 (e.g., a central processing unit (CPU), a graphics pro-
cessing unit (GPU), or both), a main memory 1504 and a
static memory 1506, which communicate with each other via
abus 1508. The computer system 1500 may further include a
video display unit 1510 (e.g., liquid crystal display (LCD),
organic light emitting diode (OLED) display, touch screen, or
a cathode ray tube (CRT)) that can be used to display the
results of the change impact analysis, for example. The com-
puter system 1500 also includes an alphanumeric input device
1512 (e.g., a keyboard, a physical keyboard, a virtual key-
board using software), a cursor control device or input sensor
1514 (e.g., amouse, atrack pad, a trackball, a sensor or reader,
a machine readable information reader, bar code reader), a
disk drive unit 1516, a signal generation device 1518 (e.g., a
speaker) and a network interface device or transceiver 1520.

The disk drive unit 1516 includes a non-transitory
machine-readable storage device medium 1522 on which is
stored one or more sets of instructions (e.g., software 1524)
embodying any one or more of the methodologies or func-
tions described herein, such as the processes of FIGS. 3,5 and
6A-6C. The software 1524 may also reside, completely or at
least partially, within the main memory 1504 and/or within

US 9,032,376 B2

25

the processor 1502 during execution thereof by the computer
system 1500, the main memory 1504 and the processor 1402
also constituting non-transitory machine-readable storage
device media. The non-transitory machine-readable storage
device medium 1522 also can store an integrated circuit
design and waveform structures.

The 1524 may further be transmitted or received over a
network 1426 via the network interface device 1520.

While the machine-readable medium 1522 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium,” “computer readable medium,”
and the like should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The term “machine-readable
medium” shall also be taken to include any medium that is
capable of storing, encoding or carrying a set of instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-readable medium” shall
accordingly be taken to include, but not be limited to, solid-
state memories, optical and magnetic media, and carrier wave
signals.

It will be appreciated that, for clarity purposes, the above
description describes some embodiments with reference to
different functional units or processors. However, it will be
apparent that any suitable distribution of functionality
between different functional units, processors or domains
may be used without detracting from the present disclosure.
For example, functionality illustrated to be performed by
separate processors or controllers may be performed by the
same processor or controller. Hence, references to specific
functional units are only to be seen as references to suitable
means for providing the described functionality, rather than
indicative of a strict logical or physical structure or organiza-
tion.

Certain embodiments described herein may be imple-
mented as logic or a number of modules, engines, compo-
nents, or mechanisms. A module, engine, logic, component,
or mechanism (collectively referred to as a “module”) may be
a tangible unit capable of performing certain operations and
configured or arranged in a certain manner. In certain
example embodiments, one or more computer systems (e.g.,
a standalone, client, or server computer system) or one or
more components of a computer system (e.g., a processor or
a group of processors) may be configured by software (e.g.,
an application or application portion) or firmware (note that
software and firmware can generally be used interchangeably
herein as is known by a skilled artisan) as a module that
operates to perform certain operations described herein.

In various embodiments, a module may be implemented
mechanically or electronically. For example, a module may
comprise dedicated circuitry or logic that is permanently
configured (e.g., within a special-purpose processor, applica-
tion specific integrated circuit (ASIC), or array) to perform
certain operations. A module may also comprise program-
mable logic or circuitry (e.g., as encompassed within a gen-
eral-purpose processor or other programmable processor)
that is temporarily configured by software or firmware to
perform certain operations. It will be appreciated that a deci-
sion to implement a module mechanically, in dedicated and
permanently configured circuitry, or in temporarily config-
ured circuitry (e.g., configured by software) may be driven by,
for example, cost, time, energy-usage, and package size con-
siderations.

Accordingly, the term “module” should be understood to
encompass a tangible entity, be that an entity that is physically

20

25

30

35

40

45

50

55

60

65

26

constructed, permanently configured (e.g., hardwired), or
temporarily configured (e.g., programmed) to operate in a
certain manner or to perform certain operations described
herein. Considering embodiments in which modules or com-
ponents are temporarily configured (e.g., programmed), each
of the modules or components need not be configured or
instantiated at any one instance in time. For example, where
the modules or components comprise a general-purpose pro-
cessor configured using software, the general-purpose pro-
cessor may be configured as respective different modules at
different times. Software may accordingly configure the pro-
cessor to constitute a particular module at one instance of time
and to constitute a different module at a different instance of
time.

Modules can provide information to, and receive informa-
tion from, other modules. Accordingly, the described mod-
ules may be regarded as being communicatively coupled.
Where multiples of such modules exist contemporaneously,
communications may be achieved through signal transmis-
sion (e.g., over appropriate circuits and buses) that connect
the modules. In embodiments in which multiple modules are
configured or instantiated at different times, communications
between such modules may be achieved, for example,
through the storage and retrieval of information in memory
structures to which the multiple modules have access. For
example, one module may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further module may then, at a
later time, access the memory device to retrieve and process
the stored output. Modules may also initiate communications
with input or output devices and can operate on a resource
(e.g., a collection of information).

Although the present disclosure has been described in con-
nection with some embodiments, it is not intended to be
limited to the specific form set forth herein. One skilled in the
art would recognize that various features of the described
embodiments may be combined in accordance with the
present disclosure. Moreover, it will be appreciated that vari-
ous modifications and alterations may be made by those
skilled in the art without departing from the spirit and scope of
the present disclosure.

In addition, in the foregoing detailed description, it can be
seen that various features are grouped together in a single
embodiment for the purpose of streamlining the disclosure.
This method of disclosure is not to be interpreted as reflecting
an intention that the claimed embodiments require more fea-
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive subject matter lies in less
than all features of a single disclosed embodiment. Thus the
following claims are hereby incorporated into the detailed
description, with each claim standing on its own as a separate
embodiment.

The foregoing description and drawings of embodiments
in accordance with the present invention are merely illustra-
tive of the principles of the invention. Therefore, it will be
understood that various modifications can be made to the
embodiments by those skilled in the art without departing
from the spirit and scope of the invention, which is defined in
the appended claims.

The invention claimed is:

1. A method to evaluate impact of a change in code of a
depended upon component of a system stored in a computer
readable storage device, upon a dependent component of the
system, comprising:

providing in a computer readable storage device a first

property evaluation summary structure that associates

US 9,032,376 B2

27

multiple respective property evaluations with a first ver-
sion of a first component of the system;

providing in a computer readable storage device a second
property evaluation summary structure that associates
multiple respective property evaluations with a second
version of the first component of the system;

providing in a computer readable storage device a third
property evaluation summary structure that associates
multiple respective property evaluations with a first ver-
sion of a second component of the system;

providing in a computer readable storage device a fourth
property evaluation summary structure that associates
multiple respective property evaluations with a second
version of the second component of the system;

comparing, by a processor, respective property evaluations
within the first property evaluation summary structure
with corresponding property evaluations within the sec-
ond property evaluation summary structure; and

comparing, by a processor, respective property evaluations
within the third property evaluation summary structure
with corresponding property evaluations within the
fourth property evaluation summary structure;

wherein the first component of the system is dependent
upon the second component of the system, and wherein
the computer readable storage device does not consist of
transitory, propagating signals.

2. The method of claim 1,

wherein each of the first, second, third and fourth property
evaluation summary structures contains the same kinds
of property evaluations.

3. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective func-
tion.

4. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective first
function; and

wherein the respective property evaluations within the
respective third and fourth property evaluation summary
structures are associated with the same respective sec-
ond function.

5. The method of claim 4,

wherein the first and second functions are different func-
tions.

6. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective func-
tion; and

wherein at least one respective property evaluation within
each of the respective first and second property evalua-
tion summary structures indicates whether the respec-
tive function returns a null pointer.

7. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective first
function;

wherein at least one respective property evaluation within
each of the respective first and second property evalua-
tion summary structures indicates whether the respec-
tive first function returns a null pointer;

20

25

30

35

40

45

50

55

60

65

28

wherein the respective property evaluations within the
respective third and fourth property evaluation summary
structures are associated with the same respective sec-
ond function; and

wherein at least one respective property evaluation within
each of the respective third and fourth property evalua-
tion summary structures indicates whether the respec-
tive second function returns a null pointer.

8. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective func-
tion; and

wherein at least one respective property evaluation within
each of the respective first and second property evalua-
tion summary structures indicates whether the respec-
tive function dereference its argument.

9. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective first
function;

wherein at least one respective property evaluation within
each of the respective first and second property evalua-
tion summary structures indicates whether the respec-
tive first function dereference its argument;

wherein the respective property evaluations within the
respective third and fourth property evaluation summary
structures are associated with the same respective sec-
ond function; and

wherein at least one respective property evaluation within
each of the respective third and fourth property evalua-
tion summary structures indicates whether the respec-
tive second function dereference its argument.

10. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective func-
tion; and

wherein at least one respective property evaluation within
each of the respective first and second property evalua-
tion summary structures indicates whether the respec-
tive function is a result of memory allocation operation.

11. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective first
function;

wherein at least one respective property evaluation within
each of the respective first and second property evalua-
tion summary structures indicates whether the respec-
tive first function dereference its argument;

wherein the respective property evaluations within the
respective third and fourth property evaluation summary
structures are associated with the same respective sec-
ond function; and

wherein at least one respective property evaluation within
each of the respective third and fourth property evalua-
tion summary structures indicates whether the respec-
tive second function dereference its argument.

12. The method of claim 1,

wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective class
definition.

US 9,032,376 B2

29
13. The method of claim 1,
wherein the respective property evaluations within the
respective first and second property evaluation summary
structures are associated with the same respective class
definition;
wherein at least one respective property evaluation within
each of the respective first and second property evalua-
tion summary structures indicates a size of an instanti-
ated class in bytes.

14. A method to evaluate impact of a change in code of a
depended upon component of a system stored in a computer
readable storage device, upon a dependent component of the
system, comprising:

identifying a dependency relationship between a first com-

ponent stored in a computer readable storage device and
a second component stored in the computer readable
storage device;

in response to a determination that the second component

depends upon the first component, configuring a com-
puter system to obtain a first property evaluation corre-
sponding to the first component; and

in response to the act of obtaining the first property evalu-

ation corresponding to the first component, configuring

the computer system to;

associate the first property evaluation with the second
component, and

obtain a second property evaluation corresponding to the
second component, wherein the second component is
associated with the first property evaluation, wherein
obtaining the second property evaluation correspond-
ing to the second component associated with the first
property evaluation includes taking into account the
first property evaluation in the course of obtaining the
second property evaluation, and wherein the com-
puter readable storage device does not consist of tran-
sitory, propagating signals.

15. The method of claim 14,

wherein associating the first property evaluation with the

second component includes associating the first prop-
erty evaluation with one or more lines of code of the
second component.

16. The method of claim 14,

wherein taking into account includes determining whether

or not to propagate the first property evaluation to the
second property evaluation.

17. The method of claim 14,

wherein associating the first property evaluation with the

second component includes associating the first prop-
erty evaluation with one or more lines of code of the
second component; and

wherein obtaining the second property evaluation corre-

sponding to the second component associated with the
first property evaluation includes taking into account the
first property evaluation associated with the one or more
lines of code of the second component in the course of
obtaining the second property evaluation.

18. The method of claim 14,

wherein taking into account includes examining one or

more lines of code of the second component and deter-
mining whether or not to propagate the first property
evaluation to the second property evaluation based at
least in part upon the examination.

19. The method of claim 14 further including:

identifying a dependency relationship between the second

component stored in the computer readable storage
device and a third component stored in the computer
readable storage device; and

20

25

30

35

40

45

55

60

65

30

in response to a determination that the third component

depends upon the second component, configuring the

computer system to:

associate the second property evaluation with the third
component, and

obtain a third property evaluation corresponding to the
third component, wherein the third component is
associated with the second property evaluation.

20. The method of claim 19,

wherein identifying the dependency relationship between

the first component and the second component includes
parsing code of the first component to identify the
dependency relationship; and

wherein identifying the dependency relationship between

the second component and the third component includes
parsing code of the second component to identify the
dependency relationship.
21. The method of claim 19 further including:
producing a dependency graph in the computer readable
storage device that indicates dependency relationships
between the first, second and third components;

wherein identifying the dependency relationship between
the first component and the second component includes
referring to the dependency graph to determine the
dependency relationship; and

wherein identifying the dependency relationship between

the second component and the third component includes
referring to the dependency graph to determine the
dependency relationship.

22. The method of claim 14,

wherein identifying the dependency relationship between

the first component and the second component includes
parsing code of the first component to identify the
dependency relationship.
23. The method of claim 14 further including:
producing a dependency graph in the computer readable
storage device that indicates dependency relationships
between the first component and the second component;

wherein identifying the dependency relationship between
the first component and the second component includes
referring to the dependency graph to determine the
dependency relationship.

24. An article of manufacture that includes a computer
readable storage device that stores code to configure a com-
puter to implement a method to evaluate impact of a change in
code of a depended upon component of a system stored in a
computer readable storage device, upon a dependent compo-
nent of the system, comprising:

identifying a dependency relationship between a first com-

ponent stored in a computer readable storage device and
a second component stored in the computer readable
storage device;

in response to a determination that the second component

depends upon the first component, configuring a com-
puter system to obtain a first property evaluation corre-
sponding to the first component; and

in response to the act of obtaining the first property evalu-

ation corresponding to the first component, configuring

the computer system to:

associate the first property evaluation with the second
component, and

obtain a second property evaluation corresponding to the
second component, wherein the second component is
associated with the first property evaluation, wherein
obtaining the second property evaluation correspond-
ing to the second component associated with the first
property evaluation includes taking into account the

US 9,032,376 B2

31

first property evaluation in the course of obtaining the
second property evaluation, and wherein the com-
puter readable storage device does not consist of tran-
sitory, propagating signals.

25. A system including a computer system operatively

coupled to a computer readable storage device, comprising:

means foridentifying a dependency relationship between a
first component stored in a computer readable storage
device and a second component stored in the computer

wherein identifying the component of the system that the
base component depended upon includes parsing

32

respective code of successive components of the system
in reverse component dependency order to identify
dependency relationships between them.

30. The method of claim 28 further including:

producing a dependency graph in the computer readable
storage device that indicates dependency relationships
between a first, second and third components;

wherein identifying the component of the system that the
base component depended upon includes referring to the
dependency graph to identify the component of the sys-

readable storage device; 10 hat the b deended
means for, in response to a determination that the second 3 lteglnt att le afse com}ﬂ)onent ﬁ:per} el (111p0n.
component depends upon the first component, obtaining : article ol manulacture that includes a computer
a first property evaluation corresponding to the first readable storage device that stores code to configure a com-
component; puter to implement a method to evaluate impact of a change in
means for, in’ response to the act of obtaining the first 13 code of a depended upon component of a system stored in a
property evaluation corresponding to the first compo- computer readable storage d.ewce, upon a dependent compo-
nent, associating the first property evaluation with the nent of the system, comprising: . . .
second component; and means for, in response to the act configuring a computer system to obtain, suce essively ina
of obtaining the first property evaluation corresponding component dependency o.rder, respective property
to the first component, obtaining a second property 20 evalugtlons for each of multiple componf:nts and .
evaluation corresponding to the second component, conﬁgunng the computer system 1o associate respective
wherein the second component is associated with the successive obtained property evaluapons in.a computer
first property evaluation, wherein obtaining the second readable storage device Wlth. respective COd? that is part
property evaluation corresponding to the second com- of a respective next successive component in the com-
ponent associated with the first property evaluation 25 ponent dependency order. that depends upon the respec-
includes taking into account the first property evaluation tive compor}ent. for. nglch tg.e respective associated
in the course of obtaining the second property evalua- property evaluation 1s obtained; .
tion, and wherein the computer readable storage device wherein at least one of the respective successive acts of
does not consist of transitory, propagating signals. obtalmI}g property evaluapons includes qbtalnmg a
26. A method to evaluate impact of a change in code of a 30 respective property fzvaluatlon for arespective compo-
depended upon component of a system stored in a computer nent having lrespectw;: qodz tfhat 15 assoc%ated Wl.th a
readable storage device, upon a dependent component of the property evaluation obtained for a respective previous
system, comprising; successive component in the component dependency
configuring a computer system to obtain, successively in a orde.r, and taking into account Fhe property evaluation
component dependency order, respective property 35 obtained for the respective previous successive compo-
evaluations for each of multiple ,c omponents and nent in the component dependency order in the course of
configuring the computer system to associate respective obtalmI}g the respectlvelzl property eval.uatlon dfor thg
successive obtained property evaluations in a computer relslpec.t WZ component (alvgllg respect(live. 0 de, an
readable storage device with respective code that is part W er.elntf e computer readable sto.ragel evice does not
of a respective next successive component in the com- 40 3 ZCOXSISt ? trgn511t 0(?.” propagatm% 51gnats. tivel
ponent dependency order that depends upon the respec- - 43 Systel mciuding a computer system operatively
tive component for which the respective associated coupled to a computer readable storage device, comprising:
property evaluation is obtained; means for obtaining, successively in a component depen-
wherein at least one of the respective successive acts of denlcy lorder, respecn\./e pfioperty evaluations for each of
obtaining property evaluations includes obtaining a 43 multiple components; and . .
respective property evaluation for a respective compo- means for associating respective successive obtained prop-
nent having respective code that is associated with a erty evaluatlgns 1 a computer readable storage device
property evaluation obtained for a respective previous with respective code that is part of a respective next
successive component in the component dependency successive component in the component dependency
order, and taking into account the property evaluation 30 ord.er that depend.s upon th.e respective component fqr
obtained for the respective previous successive compo- Vihlc.h t(lil.e respective associated property evaluation is
nent in the component dependency order in the course of obtained; . .
obtaining the respective property evaluation for the wherein at least one of the respective successive acts of
respective component having respective code, and obtalmI}g property evaluapons includes qbtalnmg 4
wherein the computer readable storage device does not 35 respective property fzvaluatlon for arespective compo-
consist of transitory, propagating signals nent having respective code that is associated with a
27 The method of clai,m 26 ’ property evaluation obtained for a respective previous
wherein the act of obtaining, successively in the compo- successive component in the component depender.lcy
nent dependency order, includes starting with a base orde.r, and taking into account Fhe property evaluation
component 60 obtained for the respective previous successive compo-
28 The methc.) d of claim 27 further including; nent in the component dependency order in the course of
identifying a component of the system that the base com- obtalmI}g the respective property eval.uatlon for the
ponent depended upon. respective component having respective code, and
29 The method of claim 28 wherein the computer readable storage device does not
) ’ 65 consist of transitory, propagating signals.

#* #* #* #* #*

